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VISCOUS FILM FLOW DOWN CORRUGATED SURFACES

UDC 532.51Yu. Ya. Trifonov

A theoretical analysis of a downward viscous film flow on corrugated surfaces is reported. The study is
based on Navier–Stokes equations (for one- and two-dimensional surfaces) and on an integral model
(for a three-dimensional surface with double corrugation). The calculations were carried out in a
wide range of Reynolds numbers and geometric characteristics of the surface with due allowance for
the surface-tension force. The shape of the free surface of the liquid film and other characteristics
of the flow are calculated. It is shown that, in the case of a one-dimensional surface, there exists
a range of parameters where the flow is predominantly governed by surface-tension forces; this flow
can be adequately treated with the integral approach. In this range of parameters, on the surface
with double corrugation, the average quantities of the downward flow in wide corrugation valleys are
determined by the fine-texture geometry.

Key words: viscous film flow, corrugated surfaces.

1. INTRODUCTION AND FORMULATION OF THE PROBLEM

Theoretical studies of film flows date back to the pioneering work of Nusselt [1], in which an exact solution
of Navier–Stokes equations for a free viscous thin-film flow down a smooth vertical wall was reported:

U0(y) =
3ν Re
H0

( y

H0
− y2

2H2
0

)
, H0 =

(3ν2 Re
g

)1/3

.

Here U0(y) is the film-flow velocity profile in the direction of the gravity force g, ν is the kinematic viscosity, and
H0 is the thickness of the liquid film for a given mass-flux density ν Re of the liquid (Re is the Reynolds number).

Subsequent theoretical and experimental studies showed that the Nusselt solution is almost never encountered
in practice: as a rule, waves are observed on the film surface. A great number of studies involved linear and nonlinear
analyses of the wave-formation process [2–5]. The problem of nonlinear waves on a film falling down a smooth plate
has much in common with the problem os a viscous flow over a corrugated surface. In both cases, the equations
are essentially nonlinear, the shape of the free surface is not known beforehand, the surface-tension forces play an
important part, and there is a spatial period involved in the problem.

In spite of the numerous applications of the problem under study to distillation processes [6, 7] and advanced
heat exchangers [8, 9], the experimental [10, 11] and theoretical [12–19] studies of the film flow on a corrugated
surface are few in number. For instance, the flow down a sine-shaped surface with a corrugation amplitude small
compared to the Nusselt thickness of the liquid film was examined with the perturbation technique by Wang [12].
Kang and Chen [13] extended this approach to the case of a two-layer film flow along a corrugated surface with
a small corrugation amplitude. Pozrikidis [14] considered a creep flow down a curved inclined surface, using the
boundary-element method and disregarding inertial forces. The asymptotic approach was used by Shetty and
Cerro [15] to examine a liquid flow down a corrugated surface with a corrugation amplitude much greater than
the Nusselt film thickness. Treating corrugation in the linear approximation, Bontozoglou and Papapolymerou [16]
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Fig. 1. Corrugated surface with rough corrugation and fine horizontal texture.

examined resonant effects in the range of finite Reynolds numbers. The numerical solution of the Navier–Stokes
equation has allowed the present author [17, 18] to examine the film flow in the range of finite Reynolds numbers
for corrugation amplitudes commensurable with the Nusselt thickness. In addition, in [17, 18], an integral approach
was developed, and stability of the flow to free-surface disturbances was examined. In [19], the present author
examined heat and mass transfer in a film flow down a corrugated surface. In all works mentioned above, the flow
down a one-dimensional curved surface (corrugation along the flow direction) was considered. The main purpose
of the present study was to examine the film flow on complicated three-dimensional surfaces (Fig. 1) with rough
corrugation (with an amplitude much greater than the Nusselt thickness) and fine texture (with an amplitude
commensurable with the Nusselt thickness).

2. GOVERNING EQUATIONS

2.1. One-Dimensional Corrugation. The film flow down a one-dimensional surface is described by a set
of Navier–Stokes equations with appropriate boundary conditions [17]:

u
∂u

∂x
+ v

∂u

∂y
= −1

ρ

∂P

∂x
+ g + ν

(∂2u

∂x2
+

∂2u

∂y2

)
, u

∂v

∂x
+ v

∂v

∂y
= −1

ρ

∂P

∂y
+ ν

(∂2v

∂x2
+

∂2v

∂y2

)
,

∂u

∂x
+

∂v

∂y
= 0, u = v = 0, y = f(x),

σiknkni = −Pa +
σ

[1 + (dh/dx)2]3/2

d2h

dx2
, σiknkτi = 0, i, k = 1, 2, y = h(x),

v = u
dh

dx
, y = h(x),

n =
(−dh/dx, 1)√
1 + (dh/dx)2

, τ =
(1, dh/dx)√
1 + (dh/dx)2

, u = (u, v), x = (x, y),

σik = −Pδik + µ
( ∂ui

∂xk
+

∂uk

∂xi

)
.
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Here, u and v are the velocity components along the x and y axes, respectively, P is the pressure in the liquid,
Pa is atmospheric pressure, ν and µ are the kinematic and dynamic viscosities, respectively, ρ is the density of the
liquid, σ is the surface tension, f(x) is the shape function of the corrugated wall, h(x) is the shape function of the
free surface of the liquid film, H(x) = h(x)− f(x) is the local thickness of the liquid film, σik are the stress-tensor
components in the liquid, and nk and τi are the normal and tangential unit vectors, respectively.

We use the transformation of coordinates x = x and η = (y − f(x))/H(x) (the flow region in the new
variables becomes known: x ∈ [0, L], η ∈ [0, 1]). Non-dimensionalizing the starting equations and combining the
boundary conditions, we obtain the following set of equations for numerical calculations:

−∂P∗

∂x∗
− ηx

∂P∗

∂η
+

1
ε Re

[
3 + η2

y

∂2u∗
∂η2

+ ε2
(∂2u∗

∂x2
∗

+ η2
x

∂2u∗
∂η2

+ 2ηx
∂2u∗
∂x ∂η

+ (ηxξ + ηxηxη)
∂u∗
∂η

)]
− ηy

∂u∗v∗
∂η

− ∂u2
∗

∂x∗
− ηx

∂u2
∗

∂η
= 0; (2.1)

∂(P∗ − (Pa)∗)
∂η

=
ε

Re

[
η2

y

∂2v∗
∂η2

+ ε2
(∂2v∗

∂x2
∗

+ η2
x

∂2v∗
∂η2

+ 2ηx
∂2v∗

∂x∗∂η

+ (ηxξ + ηxηxη)
∂v∗
∂η

)]
H∗(x∗)− ε2

(
H∗

∂u∗v∗
∂x∗

+ H∗ηx
∂u∗v∗

∂η
+

∂v2
∗

∂η

)
; (2.2)

v∗(x∗, η) = −H∗(x∗)u∗(x∗, η)ηx −
∂

∂x∗

(
H∗

η∫
0

u∗(x∗, η′) dη′
)
; (2.3)

H∗(x∗)

1∫
0

u∗(x∗, η′) dη′ = 1; (2.4)

u∗(x∗, η) = 0, η = 0; (2.5)

P∗ − (Pa)∗ =
2ε

Re
1

H∗(x∗)
∂v∗
∂η

[
1 + ε2

(d2H∗

dx2
∗

+
1
ε1

d2f∗
dx2

∗

)2] /[
1− ε2

(d2H∗

dx2
∗

+
1
ε1

d2f∗
dx2

∗

)2]

− ε2 We
(d2H∗

dx2
∗

+
1
ε1

d2f∗
dx2

∗

) / [
1 + ε2

(dH∗

dx∗
+

1
ε1

df∗
dx∗

)2]3/2

, η = 1; (2.6)

[∂u∗
∂η

+ε2H∗
∂v∗
∂x∗

− ε2
(dH∗

dx∗
+

1
ε1

df∗
dx∗

)∂v∗
∂η

][
1− ε2

(dH∗

dx∗
+

1
ε1

df∗
dx∗

)2]
+4ε2 ∂v∗

∂η

(dH∗

dx∗
+

1
ε1

df∗
dx∗

)
= 0, η = 1. (2.7)

Here x∗ = x/L, y∗ = y/H0, f∗(x) = f(x)/A, u∗ = u/u0, v∗ = v/(εu0), H∗(x) = H(x)/H0, P∗ = P/(ρu2
0),

A is the corrugation amplitude, u0 = Q0/H0, ε = H0/L, ε1 = H0/A, H0 is the Nusselt film thickness,
We = (3 Fi)1/3/ Re5/3 is the Weber number, Fi = (σ/ρ)3/(gν4) is the film number, η = (y − f(x)/ε1)/H(x),
ηx = −[η dH/dx + (1/ε1) df/dx]/H(x), ηy = 1/H(x), ηxη = −(1/H) dH/dx, ηxξ = −(ηx/H) dH/dx − [η d2H/dx2

+ (1/ε1) d2f/dx2]/H(x), and Q0 = ν Re is the mass-flux density of the liquid. In what follows, we omit the
non-dimensionalization sign.

It follows from (2.1)–(2.7) that the flow of interest is governed by the following four independent parameters:
Fi, (ν2/g)1/3/L, A/L, and Re. The corrugation shape function f(x) is also an independent variable. The problem
is to find the unknown fields u(x, y), v(x, y), P (x, y), and H(x) for specified parameters. Equations (2.1)–(2.7) were
solved numerically by the spectral method:

u(x, η) =
1
2

U1(x) +
M∑

m=2

Um(x)Tm−1(η1), η1 = 2η − 1,

Um(x) = U0
m +

N/2−1∑
n=−N/2+1, n 6=0

Un
m exp (2πinx), (U−n

m )∗ = Un
m, m = 1, . . . ,M.

(2.8)

Here Tm(η1) are the Chebyshev polynomials; the asterisk denotes complex conjugation.
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With known M(N −1) values of harmonics Un
m, the film thickness H(x) can be uniquely reconstructed from

Eq. (2.4), the velocity v(x, η) from Eq. (2.3), and the pressure P (x, η) from Eqs. (2.2) and (2.6). The numerical
algorithm starts from a first-order approximation for Un

m (e.g., from the Nusselt solution); this approximation is
to be subsequently refined by the Newton method employing Eq. (2.1) in the (n, m)-space. The Jacobian matrix
is calculated by a finite-difference scheme. The basis functions (2.8) do not automatically satisfy the boundary
conditions (2.5) and (2.7). As a consequence, we have (M + 2)(N − 1) nonlinear algebraic equations for M(N − 1)
unknown quantities, i. e., an overdetermined system. In the present work, we omit 2(N−1) equations for the two last
Chebyshev polynomials, small in value, in the decomposition of (2.1); instead, we use the boundary conditions (2.5)
and (2.7). In test computations, other strategies for reducing the total number of equations were checked. With
a good approximation for the function u(x, η), the results are practically coincident. To approximate the function
u(x, η), the numbers N and M were varied so that the condition |UN/2−1

m |/ sup |Un
m| < 10−3 for all m and the

condition |Un
M |/ sup |Un

m| < 10−3 for all n were always satisfied. A small difference between the solutions for
different N and M (with an accurately fitted velocity field) additionally justifies the numerical procedure.

In examining the wave dynamics on the surface of liquid films flowing down a smooth surface, an integral
approach (set of Shkadov’s equations [20]) is frequently used. Here, long-wave disturbances are considered. In
the case under study, similar equations can be obtained if one restricts consideration to the case of a corrugation
wavelength far exceeding the film thickness (ε � 1). Note, for the majority of corrugated structures in use [6–9],
this approximation is valid for fine corrugations. Below, the integral approach is used to calculate the flow down a
surface with double corrugation. The main idea behind the integral approach consists in using a self-similar profile
of streamwise velocity

u(x, y) =
3ν Re
H(x)

(y − f(x)
H(x)

− (y − f(x))2

2H2

)
. (2.9)

This profile satisfies the boundary conditions with ε � 1 and Eq. (2.4). We substitute (2.9) into (2.1)–(2.7),
omit small terms, and integrate across the film; then, we obtain the following set of equations governing the film-flow
dynamics on the corrugated surface:

∂q

∂t
+

6
5

∂

∂x

q2

H
=

3
ε Re

(
H − q

H2

)
+ ε2 We H

(∂3H

∂x3
+

1
ε1

d3f

dx3

)
,

∂H

∂t
+

∂q

∂x
= 0.

(2.10)

Unsteady terms are added to provide for the most complete description of processes possible in the system. Note
that the capillary term in (2.10) should be retained because the film number Fi in the Weber criterion is large for
the majority of liquids.

In the present study, of interest are the following stationary solutions of (2.10): H = H(x) and q = 1. Here,
we have three independent parameters (ε Re, ε2 We, and ε1), in contrast to Eqs. (2.1)–(2.7), which involve four
parameters, Eq. (2.10) was solved numerically by the Newton method and Fourier expansion:

H(x) =
N/2−1∑

n=−N/2+1

Hn exp (2πinx), (H−n)∗ = Hn.

In derivation of (2.10), we assumed that ε1 ≈ 1 (the corrugation amplitude and the film thickness are
commensurable). In the case of rough corrugation, we have ε1 � 1, and the integral approach yields the equation

6
5

d

ds

( 1
H

)
=

3
Re

d

ds
(H2 sin θ) +

3
ε Re

(
H cos θ − 1

H2

)
+ ε2 We H

d3H

ds3
,

cos θ =
1√

1 + ((ε/ε1) df/dx)2

∣∣∣
x=x(s)

, sin θ =
(ε/ε1) df/dx√

1 + ((ε/ε1) df/dx)2

∣∣∣
x=x(s)

, (2.11)

s =

x∫
0

√
1 +

( ε

ε1

df

dx

)2

dx1.

Here, s is the “boundary-layer” variable; the film thickness is counted off in the direction normal to the solid surface.
The periodic functions cos θ(s) and sin θ(s) are calculated from the corrugation shape.
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2.2. Two-Dimensional Corrugation. In the case of oblique corrugation (α is the anticlockwise counted
angle of inclination of the corrugation to the horizon and the coordinate z is directed along the corrugation), the
equations of motion in the (x, y) plane and in the z direction can be split if the mass flux of the liquid is set across
the corrugation. In a dimensionless form, Eqs. (2.1)–(2.11) remain unchanged, and the force g should be replaced
by g cos α in all dimensionless complexes. Note that the Reynolds number here is based on the mass-flux density
across the rib: Re = Reacross.

With the fields of u, v, P , and H found from Eqs. (2.1)–(2.7), the field of the velocity w in the z direction
can be found from the following equations:

−ηy
∂wv

∂η
− ∂wu

∂x
− ηx

∂wu

∂η
+

1
ε Re

[
η2

y

∂2w

∂η2
+ ε2

(∂2w

∂x2
+ η2

x

∂2w

∂η2
+ 2ηx

∂2w

∂x ∂η

+ (ηxξ + ηxηxη)
∂u

∂η

)]
= − 3

ε Re
tan α, Q(x) = H

1∫
0

w(x, η) dη, (2.12)

1
H

∂w

∂η

[
1 + ε2

(dH

dx
+

1
ε1

df

dx

)2]
− ε2 ∂w

∂x

(dH

dx
+

1
ε1

df

dx

)
= 0, η = 1,

w(x, η) = 0, η = 0.

For long-wave corrugation and an amplitude commensurable with the film thickness, Eq. (2.10) should be
supplemented by the following equation for the flow rate Q along the rib:

6
5

d

dx

( Q

H

)
=

3
ε Re

(
H tan α− Q

H2

)
. (2.13)

In the case of rough corrugation (ε1 � 1), the equation that supplements (2.11) coincides with (2.13) with x

replaced by s.
In all the three cases (Navier–Stokes equation, ε � 1, and ε1 � 1), the mass-flux density in the vertical

direction can be calculated by the formula

Revert = Re cos α(1 + 〈Q〉 tan α), (2.14)

where the broken brackets denote the mean value along the x or s coordinate.
Note, if the film flow is directed across the ribs, the problem of finding the shape of the free surface of the

liquid film and the velocity and pressure fields has a solution throughout the whole range of Reynolds numbers
and inclination angles α, and for an arbitrary geometry of the rib. As is shown below, if the film flow is directed
along the gravity force [Eq. (2.14) is solved simultaneously with the equations of motion], there may exist ranges of
parameters where no solution with a completely wetted surface exists.

2.3. Three-Dimensional Surface with Rough Corrugation and Fine Texture. We consider the
flow down a plate with a large corrugation period L in the x direction and fine texture with a period Ls. The
z coordinate is directed along the rough-corrugation axis, and the resultant surface profile is

F3d(x, z) = AF (x/L) + Asf((x cos ϕ− z sinϕ)/Ls). (2.15)

Here, F (x) is the dimensionless profile of rough corrugation, A is the rough-corrugation amplitude, α is the angle of
inclination of rough corrugation to the horizon, L is the rough-corrugation period, f(ξ) is the dimensionless profile
of fine texture, As is the amplitude of the fine texture, αs is the angle of inclination of fine texture to the horizon,
Ls is the fine-texture period, and ϕ = αs−α is the angle of inclination of fine texture to the rough-corrugation axis.
Note that the function F3d(x, z) is not periodic in the x and z directions. For this reason, an oblique transformation
of coordinates is used below.

The viscous film flow down the surface under consideration is a complex three-dimensional problem. Here, the
Navier–Stokes calculation of the free surface and the velocity field involves considerable computational difficulties.
As is shown in [17, 18] and in the present work, there exists a range of Reynolds numbers in which the flow along
the plate with one- or two-dimensional corrugation can be adequately described by the integral model. Therefore,
it becomes possible to develop the integral approach for the film flow down a plate with profile (2.15).

Next, we use the “boundary-layer” coordinate s directed along the solid surface formed by rough corrugation
and the local coordinate y normal to this surface. We restrict ourselves to the case in which the spatial period of
fine texture is much greater than the film thickness. The simplified equations have the following form:
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u
∂u

∂s
+ v

∂u

∂y
+ w

∂u

∂z
= −1

ρ

∂P

∂s
+ g cos α cos θ + ν

∂2u

∂y2
,

−1
ρ

∂P

∂y
− g cos α sin θ = 0,

u
∂w

∂s
+ v

∂w

∂y
+ w

∂w

∂z
= −1

ρ

∂P

∂z
+ g sinα + ν

∂2u

∂y2
,

∂u

∂s
+

∂v

∂y
+

∂w

∂z
= 0,

u = v = w = 0, y = Asf(s, z),

P = Pa − σ
(∂2h

∂s2
+

∂2h

∂z2

)
,

∂u

∂y
=

∂w

∂y
= 0, y = h(s, z),

v = u
∂h

∂s
+ w

∂h

∂z
, y = h(s, z),

h(s, z) = H(s, z) + Asf(s, z), f(s, z) = f((s cos ϕ− z sinϕ)/Ls),

cos θ =
1√

1 + (A dF/dx)2

∣∣∣
x=x(s)

, sin θ =
A dF/dx√

1 + (A dF/dx)2

∣∣∣
x=x(s)

,

s =

x∫
0

√
1 +

(
A

dF

dx1

)2

dx1.

Here, the functions cos θ and sin θ are determined by the rough-corrugation geometry.
Next, we use self-similar velocity profiles that satisfy the boundary conditions

u(y, s, z) =
3q(s, z)
H(s, z)

[y −Asf(s, z)
H(s, z)

− 1
2

(y −Asf(s, z)
H(s, z)

)2]
,

w(y, s, z) =
3Q(s, z)
H(s, z)

[y −Asf(s, z)
H(s, z)

− 1
2

(y −Asf(s, z)
H(s, z)

)2]
.

Integrating across the liquid film, we obtain

6
5

∂

∂s

q2

H
+

6
5

∂

∂z

qQ

H
= gH cos α cos θ − 3νq

H2
− 1

ρ
H

∂P ∗

∂s

− g cos α
∂

∂s

(H2

2
sin θ

)
− gHAs

∂f

∂s
cos α sin θ,

6
5

∂

∂z

Q2

H
+

6
5

∂

∂s

qQ

H
= gH sinα− 3νQ

H2
− 1

ρ
H

∂P ∗

∂z

− g cos α sin θ
∂

∂z

(H2

2

)
− gHAs

∂f

∂z
cos α sin θ,

∂Q

∂z
+

∂q

∂s
= 0, P ∗ = −σ

(∂2h

∂s2
+

∂2h

∂z2

)
, h(s, z) = H(s, z) + Asf(s, z).

Here, q is the local flow rate along the coordinate s (across large ribs) and Q is the flow rate in the z direction
(along large ribs).

Next, we use the transformation of variables

s = s, ξ = s cos ϕ− z sinϕ,
∂

∂s
→ ∂

∂s
+ cos ϕ

∂

∂ξ
,

∂

∂z
→ − sinϕ

∂

∂ξ
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and the following dimensional quantities: s/L1, ξ/Ls and l = Ls/L1 (L1 is the perimeter of one period of each large
rib), q/Q0 and Q/Q0 (Q0 is the flow rate along the gravity force), and H/H0 [H0 = (3νQ0/(g cos α))1/3]. After
some rearrangements, we have(

l
∂

∂s
+ cos ϕ

∂

∂ξ

)(6
5

q2

H
+

1.5
Re

H2 sin θ
)
− sinϕ

∂

∂ξ

(6
5

qQ

H

)

=
3

ε Re

(
H cos θ − q

H2

)
− ε2 We H

(
l

∂

∂s
+ cos ϕ

∂

∂ξ

)
P ∗ − 3ε1

Re
H sin θ cos ϕ

df

dξ
; (2.16)

(
l

∂

∂s
+ cos ϕ

∂

∂ξ

)(6
5

qQ

H

)
− sinϕ

∂

∂ξ

(6
5

Q2

H
+

1.5
Re

H2 sin θ
)

=
3

ε Re

(
H tan α− Q

H2

)
+ ε2 We H sinϕ

∂P ∗

∂ξ
+

3ε1

Re
H sin θ sinϕ

df

dξ
; (2.17)

(
l

∂

∂s
+ cos ϕ

∂

∂ξ

)
q − sinϕ

∂Q

∂ξ
= 0, P ∗ = −

(
l2

∂2

∂s2
+ 2 cos ϕ

∂2

∂s ∂ξ
+

∂2

∂ξ2

)
h(s, ξ); (2.18)

〈〈Q〉〉 sinα + 〈〈q〉〉 cos α = 1, h(s, ξ) = H(s, ξ) + f(ξ)/ε1. (2.19)

Here

cos θ =
1√

1 + ((A/L) dF/dx)2

∣∣∣
x=x(s)

, s =
L

L1

x∫
0

√
1 +

(A

L

dF

dx1

)2

dx1,

ε = H0/Ls, ε1 = H0/As, We = (3Fi)1/3/ Re5/3, and Fi = (σ/ρ)3/(gν4 cos α). The double broken brackets denote
averaging over the coordinates s and z.

In the problem under consideration, we have two shape functions for the rough- and fine-corrugation profiles,
and eight independent dimensionless parameters: (3ν2/g)1/3/Ls, As/(3ν2/g)1/3, (σ/ρg)/L2

s, Ls/L1, A/L, α, ϕ, and
Re number. Equations (2.16)–(2.19) were solved numerically by the spectral method:

H(s, ξ) =
M/2−1∑

m=−M/2+1

N/2−1∑
n=−N/2+1

Hnm exp (2πins) exp (2πimξ), (H−n,−m)∗ = Hn,m,

Q(s, ξ) =
M/2−1∑

m=−M/2+1

N/2−1∑
n=−N/2+1

Qnm exp (2πins) exp (2πimξ), (Q−n,−m)∗ = Qn,m,

q(s, ξ) =
M/2−1∑

m=−M/2+1

N/2−1∑
n=−N/2+1

qnm exp (2πins) exp (2πimξ), (q−n,−m)∗ = qn,m.

It follows from (2.18) that

qnm =

{
mQnm sinϕ/(nl + m cos ϕ), n 6= 0, m 6= 0, ϕ 6= π/2,

(1−Q00 sinα)/ cos α, n = 0, m = 0.

Thus, the problem is reduced to finding the unknown harmonics Hnm and Qnm; this problem can be
numerically solved by the Newton method. The case of ϕ = π/2 is degenerate with the symmetry Q0m = 0. In this
case, the harmonics q0m can be found from Eqs. (2.16) and (2.17).
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Fig. 3. Stream-function isolines for the corrugation angle α = 30◦ and Re = 5 (a) and 45 (b).

3. CALCULATION RESULTS

3.1. Two-Dimensional Corrugation. The data calculated by the Navier–Stokes equations (2.1)–(2.7),
(2.12), (2.14) and by the integral model (2.10), (2.13), (2.14) are plotted in Figs. 2 and 3. We considered a corrugated
surface with the following geometric parameters: A = 0.175 mm (commensurable with the Nusselt film thickness),
L = 1.57 mm, and f(x) = 0.5(1 − cos (2πx)). Note that these parameters are close to respective characteristics
of fine texture for elements of the Sulzer 500Y industrial unit [6]. The computations were performed for a low-
viscosity liquid (nitrogen at the saturation curve under atmospheric pressure) for α = 30◦. Figure 2 shows the
main free-surface characteristics versus the Reynolds number. Figure 3 shows the isolines of the stream function Ψ
(u = ∂Ψ/∂y, v = −∂Ψ/∂x) for Re = 5 and 45.

The computations performed for the flow down a plate with oblique fine corrugation allows the following
conclusions to be drawn.

For low Reynolds numbers, “thick” and thin flow regions are formed in the valleys and on the corrugation
peaks, respectively. The film thickness is minimum on the slope of the solid surface in the vicinity of the peaks.

With increasing Reynolds number, the free surface becomes more straight and the texture is “flooded” by
the liquid.
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In the examined range of Reynolds numbers, two regions can be distinguished. The flow is mainly determined
by surface-tension forces in the region of low and moderate Reynolds numbers and by inertial forces in the region
of high Reynolds numbers.

In the region where the flow is determined by surface-tension forces, the data calculated by the integral
model are in good agreement with the data calculated by the Navier–Stokes equations. For the flow down a plate
with rough corrugation, good agreement is observed between the values calculated by both models in a wide range
of Reynolds numbers, corrugation angles, and corrugation parameters. In this case, the capillary and inertial terms
are negligible, and the flow can be accurately predicted by the following formulas for the dimensionless film thickness
and flow rates:

H(s) = (1/ cos θ)1/3, q(s) = 1, Q(s) = tan α/ cos θ, Revert = Re cos α(1 + 〈Q〉 tan α).
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3.2. Three-Dimensional Surface with Rough Corrugation and Fine Texture. Figures 4–7 show
the calculation results for the flow down a plate with double corrugation. As in Sec. 3.1, the dimensionless shape of
rough and fine corrugations was set cosine. The computations were performed for nitrogen at the saturation curve
under atmospheric pressure. It follows from Eqs. (2.16)–(2.19) that the problem still involves many parameters even
if the physical properties of the liquid are fixed. We restrict ourselves to the case of a certain particular geometry
of large ribs (A = 6.5 mm, L = 11 mm, and α = 48◦), one Reynolds number (Re = 30), and a fixed fine-corrugation
period Ls = 1.57 mm. Note that the indicated values of geometric parameters are close to respective characteristics
of individual elements of the Sulzer 500Y industrial unit [6] (Fig. 1). In Figs. 4–6, the fine-corrugation amplitude was
varied from zero to a limiting value for which a solution with a completely wetted solid surface could be obtained.
The angle of inclination of fine corrugation was also varied in the calculations. The chosen values of parameters
are within the region where the data for one- and two-dimensional flows calculated by integral models are in good
agreement with the data calculated by full Navier–Stokes equations.

Figures 4–6 shows three characteristics (film thickness H, flow rate q across large ribs, and flow rate Q along
large ribs) versus the fine-corrugation amplitude, respectively.

Figure 7 shows the film-thickness distribution over one rough-corrugation period in the s and z directions for
three angles of inclination of fine texture. The values of the fine-texture amplitude are close to the corresponding
limiting values: As = 0.15 (a), 0.17 (b), and 0.0925 mm (c). Note that Fig. 7 rotated anticlockwise by 42◦ gives
a picture corresponding to a physical plane with a downward directed force of gravity. Note also that the large
corrugation rib has a peak at x = 5.5 mm.

The performed modeling of the flow down the plate with double corrugation allows the following conclusions
to be drawn.

For all fine-texture inclination angles, there is a limiting texture amplitude below which there exists a solution
with a completely wetted solid surface. For larger texture amplitudes, apparently, dry regions will emerge on the
solid surface. In the latter case, the distributions of the film thickness and flow rates in the vicinity of the critical
amplitude are more complicated. Apart from the regions where the film is thin, there are regions where the film
thickness and the flow rate are quite substantial.

The angle of inclination of fine texture has a pronounced effect on average flow parameters. With increasing
amplitude of horizontal texture, the mean flow rate along large ribs increases and the mean flow rate across large
ribs decreases. The opposite tendency is displayed by vertical and oblique textures.

This work was supported by INTAS (Grant No. 99-1107) and by the Russian Foundation for National
Science.
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